
Binary Search Trees

Data Structures & Problem Solving
Using JAVA

Second Edition

Mark Allen Weiss

Chapter 19
(continued)

© 2002 Addison Wesley

Figure 19.1
Two binary trees: (a) a search tree; (b) not a search tree

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.2
Binary search trees (a) before and (b) after the insertion of 6

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.3
Deletion of node 5 with one child: (a) before and (b) after

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.4
Deletion of node 2 with two children: (a) before and (b) after

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.13
Using the size data member to implement findKth

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.19
(a) The balanced tree has a depth of log N; (b) the unbalanced tree has a
depth of N – 1.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.20
Binary search trees that can result from inserting a permutation 1, 2, and 3; the
balanced tree shown in part (c) is twice as likely to result as any of the others.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.21
Two binary search trees: (a) an AVL tree; (b) not an AVL tree (unbalanced nodes
are darkened)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.22
Minimum tree of height H

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.23
Single rotation to fix case 1

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.25
Single rotation fixes an AVL tree after insertion of 1.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.26
Symmetric single rotation to fix case 4

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.28
Single rotation does not fix case 2.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.29
Left–right double rotation to fix case 2

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.30
Double rotation fixes AVL tree after the insertion of 5.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.31
Right–Left double rotation to fix case 3.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.34
A red–black tree: The insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90,
40, 5, and 55 (shaded nodes are red).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.35
If S is black, a single rotation between parent and grandparent, with appropriate
color changes, restores property 3 if X is an outside grandchild.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.36
If S is black, a double rotation involving X, the parent, and the grandparent, with
appropriate color changes, restores property 3 if X is an inside grandchild.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.37
If S is red, a single rotation between parent and grandparent, with appropriate color
changes, restores property 3 between X and P.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 19.38
Color flip: Only if X’s parent is red do we continue with a rotation.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

